Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

نویسندگان

  • Burak Kocuk
  • Santanu S. Dey
  • X. Andy Sun
چکیده

Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major computational challenge to today’s power industry for the realtime operation of large-scale power grids. In this paper, we propose a new technique for reformulation of the rank constraints using both principal and non-principal 2-by2 minors of the involved Hermitian matrix variable and characterize all such minors into three types. We show the equivalence of these minor constraints to the physical constraints of voltage angle differences summing to zero over threeand four-cycles in the power network. We study second-order conic programming (SOCP) relaxations of this minor reformulation and propose strong cutting planes, convex envelopes, and bound tightening techniques to strengthen the resulting SOCP relaxations. We then propose an SOCP-based spatial branch-and-cut method to obtain the global optimum of AC OPF. Extensive computational experiments show that the proposed algorithm significantly outperforms the state-of-the-art SDP-based OPF solver and on a simple personal computer is able to obtain on average a 0.71% optimality gap in no more than 720 seconds for the most challenging power system instances in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of DC Optimal Power Flow Problem Based on Nodal Approximation of Transmission Losses

This paper presents a method to improve the accuracy of DC Optimal Power Flow problem, based on evaluating some nodal shares of transmission losses, and illustrates its efficiency through comparing with the conventional DCOPF solution, as well as the full AC one. This method provides three main advantages, confirming its efficiency: 1- It results in such generation levels, line flows, and noda...

متن کامل

Optimal Placement and Sizing of TCSC & SVC for Improvement Power System Operation using Crow Search Algorithm

Abstract: The need for more efficient power systems has prompted the use of a new technologies includes Flexible AC transmission system (FACTS) devices. FACTS devices provides new opportunity for controlling the line power flow and minimizing losses while maintaining the bus voltages within a permissible limit. In this thesis a new method is proposed for optimal placement and sizing of Thyristo...

متن کامل

Observability-Enhanced PMU Placement Considering Conventional Measurements and Contingencies

Phasor Measurement Units (PMUs) are in growing attention in recent power systems because of their paramount abilities in state estimation. PMUs are placed in existing power systems where there are already installed conventional measurements, which can be helpful if they are considered in PMU optimal placement. In this paper, a method is proposed for optimal placement of PMUs incorporating conve...

متن کامل

Solving Multi-objective Optimal Power Flow Using Modified GA and PSO Based on Hybrid Algorithm

The Optimal Power Flow (OPF) is one of the most important issues in the power systems. Due to the complexity and discontinuity of some parameters of power systems, the classic mathematical methods are not proper for this problem. In this paper, the objective function of OPF is formulated to minimize the power losses of transmission grid and the cost of energy generation and improve the voltage ...

متن کامل

Recover Feasible Solutions for SOCP Relaxation of Optimal Power Flow Problems in Mesh Networks

Convex relaxation methods have been studied and used extensively to obtain an optimal solution to the optimal power flow (OPF) problem. Meanwhile, convex relaxed power flow equations are also prerequisites for efficiently solving a wide range of problems in power systems including mixed-integer nonlinear programming (MINLP) and distributed optimization. When the exactness of convex relaxations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017